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Abstract
Using the density functional theory, we present a systematic theoretical study of the layer
relaxation and surface stress of 5d transition metals. Our calculations predict layer contractions
for all surfaces, except for the (111) surface of face centered cubic Pt and Au, where slight
expansions are obtained similarly to the case of the 4d series. We also find that the relaxations
of the close packed surfaces decrease with increasing occupation number through the 5d series.
The surface stress for the relaxed, most closely packed surfaces shows similar atomic number
dependence as the surface energy. Using Cammarata’s model and our calculated surface stress
and surface energy values, we examine the possibility of surface reconstructions, which is in
reasonable agreement with the experimental observations.

1. Introduction

The determination of the surface geometry of solid surfaces
is one of the basic questions of surface science. Transition
metal surfaces are of particular interest, since they act as
catalysts in various reduction and hydrogenation reactions.
It is well known that real surfaces of pure metals can
adopt different structures from those of ideally truncated
crystals. During relaxation only rigid inward or outward
displacement of the atomic layers occurs, while in the case of
reconstruction the displacement of atoms may alter the two-
dimensional symmetry of the surface. Experimental studies
have demonstrated that the surface layer of clean transition
metal surfaces relaxes inward [1], i.e. the interlayer distance
between the topmost two atomic layers is smaller than that
of the bulk. Outward expansion of the top layer has also
been found for some surfaces of noble metals. The top layer
relaxation is often accompanied by relaxation of the subsurface
atomic layers, resulting in an oscillatory multilayer relaxation.

6 Author to whom any correspondence should be addressed.

Several theoretical models have been proposed to explain
the surface relaxation of transition metals. Generally, the
magnitude of relaxation is larger for rough surfaces than for
smooth ones. The model, proposed by Finnis and Heine [2]
based on Smoluchowski smoothing [3], states that, when
cutting a perfect crystal, charge redistribution gives rise to
an inward electrostatic force on the top layer nuclei. Since
this effect increases with surface roughness, the above model
confirms the general relationship between relaxation and
surface roughness. It also explains the contraction found for
most transition metal surfaces, but it fails to describe the noble
metal surface relaxation. Pettifor [4] proposed that the crystal
geometry is determined by the balance of the negative pressure
of the localized d bonds and the homogeneous positive pressure
of the sp electrons. According to Heine and Marks [5], at metal
surfaces the mobile sp electrons can flow into the vacuum,
while the d bonds between the first and second layers remain
practically unchanged. Therefore, the d electrons give rise to
an inward force on the surface atoms, which is proportional to
the strength of the d bonds. Because the strength of the d bonds
shows a well-known parabolic behavior across the transition
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metal series, the magnitude of the top layer relaxation is also
expected to follow a parabolic trend [6]. This model predicts
positive (outward) relaxation for noble metal surfaces. One
possible way to approach the problem of surface relaxation is
to treat the surface as a two-dimensional defect with a potential
which is screened towards the bulk metal. It is well known that
free surfaces cause Friedel oscillations in the charge density
towards the bulk metal [7]. The periodicity of the Friedel
oscillation is twice the Fermi wavevector kF and it is generally
incommensurate with the relevant lattice constant (interlayer
distance) of the metal.

In contrast to the surface energy, the surface stress is
drastically influenced by layer relaxation [8]. According to a
simple model described by Ibach [9], upon cleaving a metal
surface the electronic charge density of the broken bonds
is redistributed between surface atoms and their backbonds.
This leads to increased charge density between surface atoms.
However, lattice constraint by subsurface layers hinders in-
plane relaxation of surface atoms, resulting in the tensile
(positive) surface stress on metal surfaces. The first-principles
calculations performed so far confirm that the surface stress
on clean metal surfaces is tensile. Furthermore, strengthening
of the backbonds of surface atoms results in inward relaxation
of the top layer. Nichols et al [10] explained the surface
stress change during surface relaxation in terms of a jellium
model and performed ab initio DFT calculations to describe
the outward relaxation of the Au(111) surface. They have
suggested that the shift of the energy bands to lower energies,
i.e. the depleted surface density of states near the Fermi level,
is the driving force for the expansion on the Au(111) surface.

In this paper, we present a systematic ab initio study
of the top layer relaxation and surface stress in 5d transition
metals. In section 2 we outline the method of the surface stress
calculation, while in section 3 we summarize and discuss the
results.

2. Computational method

The surface stress is the reversible work per area to stretch the
surface elastically. It can be expressed by the Shuttleworth
equation [11]:

τi j = 1

A

∂ Aγ

∂εi j
= γ δi j + ∂γ

∂εi j
, (1)

where τi j denotes the components of the surface stress tensor,
A is the surface area, εi j stands for a deformation tensor
element and γ denotes the surface energy. The latter is defined
as the reversible work per surface area to create a surface,
i.e. γ = (E s − Eb)/A, where E s is the total energy of the
surface region and Eb is the total energy of a bulk region, both
of them referring to the same number of atoms. Throughout
the paper, superscript s refers to surface and superscript b to
bulk quantities.

In order to calculate the surface stress, we consider a slab
formed by N atomic layers parallel to the surface. For surface
calculations, the slab is embedded in vacuum, while for bulk
calculations the slab is periodically repeated along the direction
perpendicular to the atomic layers. We elongate the lattice

Table 1. Calculated bulk lattice parameters and optimized c/a ratios
for the 5d elements.

Metal Structure a (Å) c/a

La hcp 3.7649 1.6189
Hf hcp 3.1930 1.5790
Ta bcc 3.3074
W bcc 3.1704
Re hcp 2.7730 1.6156
Os hcp 2.7540 1.5776
Ir fcc 3.8767
Pt fcc 3.9774
Au fcc 4.1740

vectors lying in the surface plane by ε and keep the interlayer
distances fixed. For this distortion, the deformation tensor has
the form

εi j =
⎡
⎣

ε 0 0
0 ε 0
0 0 0

⎤
⎦ . (2)

The total energies of the surface and bulk slabs, i.e. E s and Eb,
are computed for five different deformations (ε = 0, ±0.01
and ±0.02) and fitted by a quadratic polynomial, i.e.

E s/b(ε) ≈ E s/b(0) + cs/b
1 ε + cs/b

2 ε2. (3)

Here Eb(0) is the total energy of the undistorted bulk,
calculated for the theoretical equilibrium volume. E s(0) is
the total energy of the undistorted slab with in-plane lattice
constants equal to the bulk equilibrium values, and with relaxed
interlayer distances. The surface stress is determined from the
linear coefficients of the slab and bulk energies, namely

τ = cs
1 − cb

1

4A
, (4)

where the factor 4 arises from the two surfaces of the slab and
the two deformed in-plane lattice vectors. Note that in the case
of low symmetry surfaces equation (4) gives the average of the
two main stress tensor components.

During the surface relaxation, we change the distance
between the first and second atomic layers (λs

12) on both sides
of the surface slab. To determine the equilibrium top layer
relaxation, we calculate the total energy of the surface slab
for several δ ≡ (λs

12 − λb
12)/λ

b
12 values, where λb

12 is the
bulk equilibrium interlayer distance. Then, to minimize the
numerical noises, we make a quadratic regression on the mesh
points and the minimum of the fitted curve gives the optimal δ

or λs
12.
In the present application, the total energies have been

calculated using density functional theory [12]. The Kohn–
Sham equations [13] have been solved using the Vienna ab
initio simulation package (VASP [14]) employing the Perdew–
Burke–Ernzerhof generalized gradient approximation [15].
The projector augmented-wave method was applied using a
350 eV plane-wave cutoff energy. A 25 × 25 × 25 k-point
grid was used for bulk calculations and a 55 × 55 × 1 k-point
grid was used for surface calculations (with the surface being
in the xy plane). The surface relaxations and stress calculations
were performed for the (111) facet of the face centered cubic
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Table 2. Calculated layer relaxations (in per cent) for single-layer (d s
12) and multilayer (di j ) relaxations of some low-index, close packed

surfaces of 5d transition metals.

Multilayer

Surface Single-layer ds
12 d12 d23 d34 d45 d56

La hcp(0001) −4.22 −4.77 4.33 −1.99 1.06 −0.91

Hf hcp(0001) −6.40 −6.86 3.49 −1.03 0.68 0.09

Ta bcc(110) −4.91 −4.87 0.24 0.01 0.11 0.31
bcc(100) −13.43 0.09 2.98 −1.37 0.20

W bcc(110) −3.71 −3.76 0.45 0.02 0.18 −0.16
bcc(100) −12.16 2.97 −1.34 0.20 0.10

Re hcp(0001) −5.33 −6.23 3.94 −2.72 2.93 −2.19
hcp(101̄0) −16.44 0.12 −1.85 1.79 −1.35

Os hcp(0001) −3.72 −3.79 0.04 0.89 −0.04 −0.47
hcp(101̄0) −17.20 0.63 −2.41 1.54 −1.32

Ir fcc(111) −2.05 −2.09 −0.51 0.32 −0.02 0.10
fcc(100) −5.42 0.99 0.35 −0.23 −0.17

Pt fcc(111) 1.19 0.99 −0.49 −0.12 0.11 0.12
fcc(100) −2.54 −0.47 0.03 0.28 0.29

Au fcc(111) 1.92 1.67 0.04 0.22 0.38 0.29
fcc(100) −1.52 0.10 0.32 0.09 0.04

(fcc) lattice, for the (110) facet of the body centered cubic (bcc)
lattice, for the (0001) facet of the hcp lattice and for the (100)

surface facets of the bcc and fcc metals. The free surfaces were
modeled by slab geometries. Each slab contained 10 atomic
layers and a vacuum layer of width equivalent to 5 atomic
layers for the most closely packed geometries, while for the
bcc and fcc (100) facets we have used 12 atomic layers. In
all calculations, the in-plane lattice constants were fixed to the
theoretical bulk equilibrium values and the interlayer distances
(λi j , i and j are the layer indices) were allowed to relax.

3. Results and discussion

3.1. Relaxation and stress

The calculated bulk equilibrium lattice parameters and c/a
ratios are listed in table 1. They are in perfect agreement with
former theoretical results obtained using the same exchange–
correlation functional [16]. In table 2, we list our results for the
single-layer and multilayer relaxations obtained for some low-
index surfaces of 5d transition metals. First, when we compare
the single and multilayer relaxation cases we can conclude that
there is no essential difference in the topmost layer relaxation.
Examining the calculated multilayer relaxations seen in table 2,
we see that for most 5d metals the relaxation decays relatively
fast with the distance from the surface. The only striking
exception is Re [17], where d56 has a similar magnitude as the
top layer relaxation (d12). A similar anomalous behavior was
found in the case of hcp Tc [8].

The calculated surface energy, stress and excess surface
stress are listed in table 3 for the relaxed, most closely packed
and cubic (100) surfaces of 5d transition metals. For the
most closely packed surfaces the surface energy and stress
are compared in figure 1. At the beginning of the series the
magnitude of the surface stress values are similar (or smaller)
to those of the surface energy: in some cases the excess surface

Figure 1. Calculated surface energy and surface stress values for the
relaxed, most closely packed surface facets of the 5d series.

(This figure is in colour only in the electronic version)

stress ( ∂γ

∂εi j
from equation (4)) is negative. For the second half

of the series the excess surface stress can be exceptionally high,
like for Ir and Pt, which has consequences for the possible
surface reconstructions, as we will see later.

3.2. Stability of close packed surfaces

Intuitively it is straightforward to assume that a large surface
stress can result in a surface reconstruction. This idea is
described quantitatively in Cammarata’s model (first proposed
by Herring [18], and later extended by Cammarata [19]).
Several effects should be taken into account in order to predict
if a surface will reconstruct or not. First of all it is obvious
that there is a remarkable energy gain if a surface with tensile
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Table 3. Calculated surface energy (γ ), total (τ ) and excess (τ − γ )
surface stress (in J m−2) for the most closely packed and cubic (100)
surfaces of 5d transition metals. The results correspond to the fully
layer-relaxed geometry. For the most closely packed surfaces
10-layer slab geometry was used, while for the (100) surfaces
12-layer slab geometry was used.

Surface γ τ (τ − γ )

La hcp(0001) 0.713 0.642 −0.07

Hf hcp(0001) 1.733 1.235 −0.50

Ta bcc(110) 2.365 2.576 0.21
bcc(100) 2.469 1.784 −0.68

W bcc(110) 3.279 4.076 0.80
bcc(100) 4.021 2.706 −1.31

Re hcp(0001) 2.605 3.366 0.73

Os hcp(0001) 2.956 5.073 2.12

Ir fcc(111) 2.057 4.367 2.31
fcc(100) 2.840 3.246 0.41

Pt fcc(111) 1.493 4.252 2.76
fcc(100) 1.848 3.323 1.47

Au fcc(111) 0.707 1.766 1.06
fcc(100) 0.864 2.073 1.21

stress is compressed and the surface strain energy is reduced.
This energy gain is proportional to the surface stress τ . At
the same time, however, the density of atoms at the surface is
increased, i.e. atoms should be transferred from the bulk to the
surface, which is roughly proportional to the surface energy
γ . Therefore the driving force for surface reconstruction is
proportional to the excess surface stress τ − γ . This energy
gain should be compared to the energy contribution associated
with the energetically unfavorable sites in the reconstructed
layer. In Cammarata’s model this energy contribution is
described by the energy change due to the formation of a
dislocation using the continuum elastic theory: αGb, where G
stands for the shear modulus, b is the magnitude of the Burgers’
vector of the reconstruction and α ∼= (4π(1 − ν))−1 ∼= 0.1
(ν stands for Poisson’s ratio). Reconstruction is expected if
τ − γ � αGb.

In table 4 we have listed these elastic energy contributions
for Re–Au. According to these, reconstruction is expected for
Au(111), (100), Pt(111) and perhaps Pt(100). In all other cases
the excess stress is not enough to compensate for the elastic
energy loss. It is interesting to compare these results with
the experimentally observed surface reconstructions [20], like
Ir(100) [21], Pt(100) [22], Au(100) [23], Au(111) [24, 25] and
Pt(111) [26–28]. For the Ir(100) we have no explanation for
the reconstruction, although in this case we do not expect that
the formation of a quasi-hexagonal, close packed top surface
layer is properly described by Cammarata’s model. For all
other cases our predictions are in good agreement with the
experimental observations.

4. Conclusions

We have presented a systematic theoretical study of the top
layer relaxation and surface stress of 5d transition metals. We
have examined the atomic number dependence of the surface

Table 4. Estimated elastic energy change in the continuum model
during reconstruction—‘creating a dislocation’—for the most closely
packed surfaces (mcp) of Re–Au and for the fcc(100) surfaces of Ir,
Pt and Au. mcp stands for (0001) for Re and Os and (111) for Ir, Pt
and Au. The corresponding excess surface stress values are also
shown.

(τ−γ )mcp

(J m−2)
(τ −γ )100

(J m−2)
G
(GPa) b (Å)

Gb/10
(J m−2)

Re 0.73 — 180 2.773 5.0
Os 2.12 — 223 2.754 6.1
Ir 2.31 0.41 209 2.741 5.7
Pt 2.76 1.47 61 2.812 1.7
Au 1.06 1.21 26 2.951 0.8

energy and stress values, and pointed out the exceptionally high
excess surface stress for the second half of the series and its
consequences for the possible surface reconstructions.
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